Discrete Random Variables 8

Intuitively, to tell whether a random variable is discrete, we simply consider the possible values of the random variable. If the random variable can be imited to only a finite or countably infinite number of possibilities, then it is discrete.

Example 8.1. Voice Lines: A voice communication system for a business contains 48 external lines. At a particular time, the random variable X denote the number of lines in use. Then, Xcan assume any of the integer values 0 through 48. [15, Ex 3-1]

Definition 8.2. A random variable X is said to be a **discrete** random variable if there exists a countable number of distinct real numbers x_k such that

$$\sum_{k} P[X = x_k] = 1.$$
 or (13) countably infinite

In other words, X is a discrete random variable if and only if Xhas a countable support.

Example 8.3. For the random variable N in Example 7.8 (Three Coin Tosses) Coin Tosses),

The collection of possible values

0, 1,2,3

10, 1,2,3

in finite. Sy the

random variab The possible values are For the random variable S in Example 7.9 (Sum of Two Dice), i

The possible values are 234 12 The collection is finite so RV is discrete.

Example 8.4. Toss a coin until you get a H. Let N be the number of times that you have to toss the coin.

The possible values are 1, 2, 7, ---This collection is countably infinite. RV is discrete.

Example 8.5. Measure the current room temperature.

The possible values are any real numbers between 273.15 to $\approx 1.417 \times 10^{32}$ °C. Any interval of positive length has uncountably many members in it. So, this random variable is *not* discrete.

8.6. Although the support S_X of a random variable X is defined as any set S such that $P[X \in S] = 1$. For discrete random variable, S_X is usually set to be $\{x : P[X = x] > 0\}$, the set of all "possible values" of X.

Definition 8.7. An *integer-valued random variable* is a discrete random variable whose x_k in (13) above are all integers.

8.8. Recall, from 7.21, that the **probability distribution** of a random variable X is a description of the probabilities associated with X. For a discrete random variable, the distribution can be described by just a list of all its possible values (x_1, x_2, x_3, \ldots) along with the probability of each:

$$(P[X = x_1], P[X = x_2], P[X = x_3], \ldots).$$

In many cases, it is convenient to express the probability in the form of a formula. This is especially useful when dealing with a random variable that has infinite support. It would be tedious to list all the possible values and the corresponding probabilities.

8.1 PMF: Probability Mass Function

Definition 8.9. When X is a discrete random variable satisfying (13), we define its **probability mass function** (pmf) by³²

$$p_X(x) = P[X = x].$$

- Sometimes, when we only deal with one random variable or when it is clear which random variable the pmf is associated with, we write p(x) or p_x instead of $p_X(x)$.
- The argument (x) of a pmf ranges over all real numbers. Hence, the pmf is (and should be) defined for x that is not among the x_k in (13) as well. In such case, the pmf is simply 0. This is usually expressed as " $p_X(x) = 0$, otherwise" when we specify a pmf for a particular random variable.

³²Many references (including [15] and MATLAB) does not distinguish the pmf from another function called the probability density function (pdf). These references use the function $f_X(x)$ to represent both pmf and pdf. We will NOT use $f_X(x)$ for pmf. Later, we will define $f_X(x)$ as a probability density function which will be used primarily for another type of random variable (continuous RV).

Additional Example:

In the in-class exercise, we roll a fair six-sided dice 1 = {1,2,3, ..., 6}

and define Y(w) = 2 + (w-1)(w-3)(w-5)(w-7)

W	7(w)	The possible values of Y are
1	2	~13, 2 ₂ 11
2	-13	
3	2 -13 2 11 2 -13	three possibilities
4	11	V
5	2	finite
6	1-13	↓
		T is discrete.

When
$$y=2$$
, $p_{Y}(2) = P[Y=2] = \frac{3}{6} = \frac{1}{2}$
 $p_{Y}(1) = P[Y=1] = 0$

$$P_{Y}(y) = P[Y = y]$$

when $y = 2$, $P_{Y}(z) = P[Y = z] = \frac{3}{6} = \frac{1}{2}$

$$P_{Y}(1) = P[Y = 1] = 0$$

$$P_{Y}(11) = P[Y = 11] = P(\{4\}) = \frac{1}{6}$$

$$P_{Y}(-13) = P[Y = -13] = P(\{2, 6\}) = \frac{2}{6} = \frac{1}{3}$$

$$P_{Y}(y) = \begin{cases} 1/2, & y = 2, \\ 1/6, & y = 11, \\ 1/3, & y = -13, \\ 0, & \text{otherwise.} \end{cases}$$

$$p_{\gamma}(y) = \begin{cases} 1/6, & y=11, \\ 1/3, & y=-13, \\ 0, & \text{otherwise} \end{cases}$$

• The pmf of a discrete random variable X is usually referred to as its distribution.

Example 8.10. Continue from Example 7.8. N is the number of heads in a sequence of three coin tosses.

- **8.11.** Graphical Description of the Probability Distribution: Traditionally, we use **stem plot** to visualize p_X . To do this, we graph a pmf by marking on the horizontal axis each value with nonzero probability and drawing a vertical bar with length proportional to the probability.
- **8.12.** Any pmf $p(\cdot)$ satisfies two properties:

(a)
$$p(\cdot) \geq 0$$

(b) there exists numbers x_1, x_2, x_3, \ldots such that $\sum_k p(x_k) = 1$ and p(x) = 0 for other x.

When you are asked to verify that a function is a pmf, check these two properties.

8.13. Finding probability from pmf: for "any" subset B of \mathbb{R} , we can find

$$P[X \in B] = \sum_{x_k \in B} P[X = x_k] = \sum_{x_k \in B} p_X(x_k).$$

In particular, for integer-valued random variables,

$$P[X \in B] = \sum_{k \in B} P[X = k] = \sum_{k \in B} p_X(k).$$

8.14. Steps to find probability of the form P [some condition(s) on X] when the pmf $p_X(x)$ is known.

- (a) Find the support of X.
- (b) Consider only the x inside the support. Find all values of x that satisfy the condition(s).
- (c) Evaluate the pmf at x found in the previous step.
- (d) Add the pmf values from the previous step.

Example 8.15. Back to Example 7.7 where we roll one dice.

• The "important" probabilities are

$$P[X=1] = P[X=2] = \cdots = P[X=6] = \frac{1}{6}$$

- In tabular form:
 Probability mass function
 - (PMF):

Dummy variable —	x	P[X=x]
variable	1	1/6
	2	1/6
	3	1/6
	4	1/6
	5	1/6
	6	1/6

- $p_X(x) = \begin{cases} 1/6, & x = 1, 2, 3, 4, 5, 6, \\ 0, & \text{otherwise.} \end{cases}$
- In general, $p_X(x) = P[X = x]$
- Stem plot:

Suppose we want to find P[X > 4].

Steps	For this example
Find the support of <i>X</i> .	The support of X is $\{1,2,3,4,5,6\}$.
Consider only the <i>x</i> inside the support. Find all values of <i>x</i> that satisfy the condition(s).	The members which satisfies the condition ">4" is 5 and 6.
Evaluate the pmf at <i>x</i> found in the previous step.	The pmf values at 5 and 6 are all 1/6.
Add the pmf values from the previous step.	Adding the pmf values gives $2/6 = 1/3$.

Example 8.16. Consider a RV X whose
$$p_X(x) = \begin{cases} 1/2, & x = 1, \\ 1/4, & x = 2, \\ 1/8, & x \in \{3, 4\}, \\ 0, & \text{otherwise.} \end{cases}$$

stem plot:

Example 8.17. Suppose a random variable X has pmf

$$p_X(x) = \begin{cases} c/x, & x = 1, 2, 3, \\ 0, & \text{otherwise.} \end{cases}$$

(a) The value of the constant c is

"
$$Z = 1$$
": $C + \frac{C}{2} + \frac{C}{3} = 1 \Rightarrow C = \frac{6}{11}$

 $p_X(x) = \begin{cases} \frac{c}{x}, & x = 1, 2, 3, \\ 0, & \text{otherwise.} \end{cases}$ the constant c is $\frac{c}{x} = \frac{c}{x}$ $\frac{c}{x} = \frac{c}{x}$

(b) Sketch its pmf

(c) P[X=1]

$$= p_{x}(1) = \frac{6}{11}$$

(d)
$$P[X \ge 2] = P[X = 2 \text{ or } 3] = p_{x}(2) + p_{x}(3) = \frac{3}{14} + \frac{2}{11} = \frac{5}{21}$$

(e)
$$P[X > 3] = 0$$

8.18. Any function $p(\cdot)$ on \mathbb{R} which satisfies

- (a) $p(\cdot) \geq 0$, and
- (b) there exists numbers x_1, x_2, x_3, \ldots such that $\sum_k p(x_k) = 1$ and p(x) = 0 for other x

is a pmf of some discrete random variable.

8.2 CDF: Cumulative Distribution Function

Definition 8.19. The (*cumulative*) distribution function (*cdf*) of a random variable X is the function $F_X(x)$ defined by

$$\widehat{F}_{X}(x) = P[X \le x].$$

- \bullet The argument (x) of a cdf ranges over all real numbers.
- From its definition, we know that $0 \le F_X \le 1$.
- Think of it as a function that collects the "probability mass" from $-\infty$ up to the point x.
- **8.20.** From pmf to cdf: In general, for any discrete random variable with possible values x_1, x_2, \ldots , the cdf of X is given by

$$F_X(x) = P[X \le x] = \sum_{x_k \le x} p_X(x_k).$$

Example 8.21. Continue from Examples 7.8, 7.12, and 8.10 where N is defined as the number of heads in a sequence of three coin tosses. We have

$$p_N(0) = p_N(3) = \frac{1}{8} \text{ and } p_N(1) = p_N(2) = \frac{3}{8}.$$
(a) $F_N(0) = P[N = 0] = P_N(0) = \frac{1}{8}$

8.22. Facts:

- For any discrete r.v. X, F_X is a right-continuous, **staircase** function of x with jumps at a countable set of points x_k .
- When you are given the cdf of a discrete random variable, you can derive its pmf from the locations and sizes of the jumps. If a jump happens at x = c, then $p_X(c)$ is the same as the amount of jump at c. At the location x where there is no jump, $p_X(x) = 0$.

Example 8.23. Consider a discrete random variable X whose cdf $F_X(x)$ is shown in Figure 19.

8.24. Characterizing³³ properties of cdf:

CDF1 F_X is non-decreasing (monotone increasing)

CDF2 F_X is right-continuous (continuous from the right)

= for all x,
$$F_{x}(x^{+}) = F_{x}(x)$$

$$F_{x}(c^{+}) = \lim_{\alpha \to c} F_{x}(\alpha)$$

$$= \lim_{h \to 0} F_{x}(\alpha + h)$$

$$= \lim_{h \to 0} F_{x}(\alpha + h)$$

Figure 20: Right-continuous function at jump point

CDF3
$$\lim_{x \to -\infty} F_X(x) = 0$$
 and $\lim_{x \to \infty} F_X(x) = 1$.

8.25. For discrete random variable, the cdf F_X can be written as

$$F_X(x) = \sum_{x_k} p_X(x_k) u(x - x_k),$$

where $u(x) = 1_{[0,\infty)}(x)$ is the unit step function.

³³These properties hold for any type of random variables. Moreover, for any function F that satisfies these three properties, there exists a random variable X whose CDF is F.